ESTADOS DE ENERGIAS QUÂNTICO DE GRACELI.
se tem sensibilidades térmicas diferentes conforme os tipos de materiais e tipos de energias que são empregadas, provando assim que os estados de energias e quântico variam conforme são empregadas tipos diferenciados de energias.
ou seja, com amesma temperatura se tem sensibilidades variadas conforme esta temperaura foi produzida sobre um esmo material.
e o mesmo acorre sobre materiais diferenciados.
ou seja, estados de energias variados em mesmos materiais, e também em materiais diferenciados.
se tem sensibilidades térmicas diferentes conforme os tipos de materiais e tipos de energias que são empregadas, provando assim que os estados de energias e quântico variam conforme são empregadas tipos diferenciados de energias.
ou seja, com amesma temperatura se tem sensibilidades variadas conforme esta temperaura foi produzida sobre um esmo material.
e o mesmo acorre sobre materiais diferenciados.
ou seja, estados de energias variados em mesmos materiais, e também em materiais diferenciados.
X
TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA.
[EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
-
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
ΤDCG
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli +
DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
-
-
DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
x
sistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
x
número atômico, estrutura eletrônica, níveis de energia
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
-
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
X
[ESTADO QUÂNTICO]
PARA TODA FORMA DE FUNÇÃO E EQUAÇÃO EM:
O rotador retrocedido,[1] também escrito como rotor retrocedido[2], é um modelo de protótipo para estudos de caos e caos quântico.[3] Ele descreve uma partícula que é forçada a se mover em um anel (equivalente: um bastão rotativo).[4] A partícula é propelida periodicamente por um campo homogêneo (equivalente: a gravitação é ativada periodicamente em pulsos curtos).[5] O modelo é descrito pelo Hamiltoniano[6]
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
X
PARA TODA FORMA DE FUNÇÃO E EQUAÇÃO EM:
O rotador retrocedido,[1] também escrito como rotor retrocedido[2], é um modelo de protótipo para estudos de caos e caos quântico.[3] Ele descreve uma partícula que é forçada a se mover em um anel (equivalente: um bastão rotativo).[4] A partícula é propelida periodicamente por um campo homogêneo (equivalente: a gravitação é ativada periodicamente em pulsos curtos).[5] O modelo é descrito pelo Hamiltoniano[6]
- x
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Onde é a função delta de Dirac, é a posição angular (por exemplo, em um anel), tirada no módulo , é o momento e é a força de retrocesso. Sua dinâmica é descrita pelo mapa padrão
- x
Onde é a função delta de Dirac, é a posição angular (por exemplo, em um anel), tirada no módulo , é o momento e é a força de retrocesso. Sua dinâmica é descrita pelo mapa padrão
- x
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Com a ressalva de que não é periódico, como está no mapa padrão. Veja mais detalhes e referências na Scholarpedia associada
Com a ressalva de que não é periódico, como está no mapa padrão. Veja mais detalhes e referências na Scholarpedia associada
Conexão com a simetria do estado quântico[editar | editar código-fonte]
O princípio de exclusão de Pauli pode ser deduzido a partir da hipótese de que um sistema de partículas só pode ocupar estados quânticos anti-simétricos. De acordo com o teorema spin-estatística, sistemas de partículas idênticas de spin inteiro ocupam estados simétricos, enquanto sistemas de partículas de spin semi-inteiro ocupam estados anti-simétricos; além disso, apenas valores de spin inteiros ou semi-inteiros são permitidos pelos princípio da mecânica quântica.
Como discutido no artigo sobre partículas idênticas, um estado anti-simétrico no qual uma das partículas está no estado (nota) enquanto a outra está no estado é
- x
O princípio de exclusão de Pauli pode ser deduzido a partir da hipótese de que um sistema de partículas só pode ocupar estados quânticos anti-simétricos. De acordo com o teorema spin-estatística, sistemas de partículas idênticas de spin inteiro ocupam estados simétricos, enquanto sistemas de partículas de spin semi-inteiro ocupam estados anti-simétricos; além disso, apenas valores de spin inteiros ou semi-inteiros são permitidos pelos princípio da mecânica quântica.
Como discutido no artigo sobre partículas idênticas, um estado anti-simétrico no qual uma das partículas está no estado (nota) enquanto a outra está no estado é
- x
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
No entanto, se e são exatamente o mesmo estado, a expressão acima é identicamente nula:
Isto não representa um estado quântico válido, porque vetores de estado que representem estados quânticos têm obrigatoriamente que ser normalizáveis, isto é devem ter norma finita. Em outras palavras, nunca poderemos encontrar as partículas que formam o sistema ocupando um mesmo estado quântico.
Na mecânica quântica, os símbolos 3-j de Wigner, também chamados de símbolos 3-jm, são uma alternativa aos coeficientes de Clebsch-Gordan[1] com a finalidade de adicionar momentos angulares.[2] Enquanto as duas propostas abordam exatamente o mesmo problema físico, os símbolos 3-j são mais simétricos e, portanto, têm propriedades de simetria maiores e mais simples que os coeficientes de Clebsch-Gordan.
No entanto, se e são exatamente o mesmo estado, a expressão acima é identicamente nula:
Isto não representa um estado quântico válido, porque vetores de estado que representem estados quânticos têm obrigatoriamente que ser normalizáveis, isto é devem ter norma finita. Em outras palavras, nunca poderemos encontrar as partículas que formam o sistema ocupando um mesmo estado quântico.
Na mecânica quântica, os símbolos 3-j de Wigner, também chamados de símbolos 3-jm, são uma alternativa aos coeficientes de Clebsch-Gordan[1] com a finalidade de adicionar momentos angulares.[2] Enquanto as duas propostas abordam exatamente o mesmo problema físico, os símbolos 3-j são mais simétricos e, portanto, têm propriedades de simetria maiores e mais simples que os coeficientes de Clebsch-Gordan.
Relação matemática com o coeficiente de Clebsch-Gordan[editar | editar código-fonte]
Os símbolos 3-j são dados em termos dos coeficientes Clebsch-Gordan por
- x
Os símbolos 3-j são dados em termos dos coeficientes Clebsch-Gordan por
- x
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Os termos j e m'são números quânticos de momento angular, isto é, cada j (e cada m correspondente) é um número inteiro não negativo ou meio inteiro ímpar (Os meio-inteiros são precisamente números que são metade de um inteiro ímpar). O expoente do fator de sinal é sempre um número inteiro, portanto permanece o mesmo quando transposto para o lado esquerdo, e a relação inversa segue ao fazer a substituição m3 → −m3:
- .
- x
Os termos j e m'são números quânticos de momento angular, isto é, cada j (e cada m correspondente) é um número inteiro não negativo ou meio inteiro ímpar (Os meio-inteiros são precisamente números que são metade de um inteiro ímpar). O expoente do fator de sinal é sempre um número inteiro, portanto permanece o mesmo quando transposto para o lado esquerdo, e a relação inversa segue ao fazer a substituição m3 → −m3:
- .
- x
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Propriedades de simetria[editar | editar código-fonte]
Um símbolo de 3-j é invariante sob uma permutação uniforme de suas colunas:
Uma permutação ímpar das colunas dá um fator de fase:
Os símbolos 3-j também têm as chamadas simetrias de Regge,[4] que não são devidas a permutações ou reversão de tempo.[5] Essas simetrias são,
- x
Um símbolo de 3-j é invariante sob uma permutação uniforme de suas colunas:
Uma permutação ímpar das colunas dá um fator de fase:
Os símbolos 3-j também têm as chamadas simetrias de Regge,[4] que não são devidas a permutações ou reversão de tempo.[5] Essas simetrias são,
- x
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Com as simetrias Regge, o símbolo 3-j tem um total de 72 simetrias. Estes são melhor apresentadas pela definição de um símbolo Regge[6] que é uma correspondência um-para-um entre ele e um símbolo 3-j e assume as propriedades de um quadrado semi-mágico.[7]
-
Na mecânica quântica, os símbolos 6-j de Wigner foram introduzidos por Eugene Paul Wigner em 1940 e publicado em 1965. Eles são definidos como uma soma sobre os produtos de quatro símbolos 3-j de Wigner,[1][2]
A soma é mais de todos os seis mi permitidos pelas regras de seleção dos símbolos 3-J.
Eles estão intimamente relacionados com os coeficientes W de Racah,[3] que são utilizados para reacoplamento três momentos angulares, embora símbolos 6-j de Wigner têm maior simetria e, por conseguinte, proporcionar um meio mais eficiente de armazenar os coeficientes de reacoplamento. O relacionamento deles é dado por[4]:
Com as simetrias Regge, o símbolo 3-j tem um total de 72 simetrias. Estes são melhor apresentadas pela definição de um símbolo Regge[6] que é uma correspondência um-para-um entre ele e um símbolo 3-j e assume as propriedades de um quadrado semi-mágico.[7]
- Na mecânica quântica, os símbolos 6-j de Wigner foram introduzidos por Eugene Paul Wigner em 1940 e publicado em 1965. Eles são definidos como uma soma sobre os produtos de quatro símbolos 3-j de Wigner,[1][2]A soma é mais de todos os seis mi permitidos pelas regras de seleção dos símbolos 3-J.Eles estão intimamente relacionados com os coeficientes W de Racah,[3] que são utilizados para reacoplamento três momentos angulares, embora símbolos 6-j de Wigner têm maior simetria e, por conseguinte, proporcionar um meio mais eficiente de armazenar os coeficientes de reacoplamento. O relacionamento deles é dado por[4]:
Simetria conformal
-
-
Em física teórica, a simetria conformal (ou simetria conforme) é uma simetria sob dilatação (invariância de escala[1]) e sob as transformações especiais conformes. Em conjunto com o grupo de Poincaré esses geram o grupo de simetria conformada.[2]
-
- Em física teórica, a simetria conformal (ou simetria conforme) é uma simetria sob dilatação (invariância de escala[1]) e sob as transformações especiais conformes. Em conjunto com o grupo de Poincaré esses geram o grupo de simetria conformada.[2]
Transformação conforme[editar | editar código-fonte]
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
-
-
onde gera translações, gera transformações de escala como um escalar e gera as transformações conformes especiais como um vetor covariante [3] sob transformações de Lorentz.
-
-
-
- onde gera translações, gera transformações de escala como um escalar e gera as transformações conformes especiais como um vetor covariante [3] sob transformações de Lorentz.