sexta-feira, 7 de agosto de 2020


ESTADOS DE ENERGIAS  QUÂNTICO DE GRACELI.

se tem sensibilidades térmicas diferentes conforme os tipos de materiais e tipos de energias que são empregadas, provando assim que os estados de energias e quântico variam conforme são empregadas tipos diferenciados de energias.


ou seja, com amesma temperatura se tem sensibilidades variadas conforme esta temperaura foi produzida sobre um esmo material.

e o mesmo acorre sobre materiais diferenciados.

ou seja, estados de energias variados em mesmos materiais, e também em materiais diferenciados.
X


TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X
 [ESTADO QUÂNTICO]


PARA TODA FORMA DE FUNÇÃO E EQUAÇÃO EM:

rotador retrocedido,[1] também escrito como rotor retrocedido[2], é um modelo de protótipo para estudos de caos e caos quântico.[3] Ele descreve uma partícula que é forçada a se mover em um anel (equivalente: um bastão rotativo).[4] A partícula é propelida periodicamente por um campo homogêneo (equivalente: a gravitação é ativada periodicamente em pulsos curtos).[5] O modelo é descrito pelo Hamiltoniano[6]
x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Onde  é a função delta de Dirac é a posição angular (por exemplo, em um anel), tirada no módulo  é o momento e  é a força de retrocesso. Sua dinâmica é descrita pelo mapa padrão
x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Com a ressalva de que  não é periódico, como está no mapa padrão. Veja mais detalhes e referências na Scholarpedia associada




Conexão com a simetria do estado quântico[editar | editar código-fonte]

O princípio de exclusão de Pauli pode ser deduzido a partir da hipótese de que um sistema de partículas só pode ocupar estados quânticos anti-simétricos. De acordo com o teorema spin-estatística, sistemas de partículas idênticas de spin inteiro ocupam estados simétricos, enquanto sistemas de partículas de spin semi-inteiro ocupam estados anti-simétricos; além disso, apenas valores de spin inteiros ou semi-inteiros são permitidos pelos princípio da mecânica quântica.
Como discutido no artigo sobre partículas idênticas, um estado anti-simétrico no qual uma das partículas está no estado  (nota) enquanto a outra está no estado  é
x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


No entanto, se  e  são exatamente o mesmo estado, a expressão acima é identicamente nula:
Isto não representa um estado quântico válido, porque vetores de estado que representem estados quânticos têm obrigatoriamente que ser normalizáveis, isto é devem ter norma finita. Em outras palavras, nunca poderemos encontrar as partículas que formam o sistema ocupando um mesmo estado quântico.




Na mecânica quântica, os símbolos 3-j de Wigner, também chamados de símbolos 3-jm, são uma alternativa aos coeficientes de Clebsch-Gordan[1] com a finalidade de adicionar momentos angulares.[2] Enquanto as duas propostas abordam exatamente o mesmo problema físico, os símbolos 3-j são mais simétricos e, portanto, têm propriedades de simetria maiores e mais simples que os coeficientes de Clebsch-Gordan.

Relação matemática com o coeficiente de Clebsch-Gordan[editar | editar código-fonte]

Os símbolos 3-j são dados em termos dos coeficientes Clebsch-Gordan por
x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Os termos j e m'são números quânticos de momento angular, isto é, cada j (e cada m correspondente) é um número inteiro não negativo ou meio inteiro ímpar (Os meio-inteiros são precisamente números que são metade de um inteiro ímpar). O expoente do fator de sinal é sempre um número inteiro, portanto permanece o mesmo quando transposto para o lado esquerdo, e a relação inversa segue ao fazer a substituição m3 → −m3:
.
x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Propriedades de simetria[editar | editar código-fonte]

Um símbolo de 3-j é invariante sob uma permutação uniforme de suas colunas:
Uma permutação ímpar das colunas dá um fator de fase:
Alterando o sinal dos números  quânticos (inversão de tempo[3]) também dá uma fase:
Os símbolos 3-j também têm as chamadas simetrias de Regge,[4] que não são devidas a permutações ou reversão de tempo.[5] Essas simetrias são,
x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Com as simetrias Regge, o símbolo 3-j tem um total de 72 simetrias. Estes são melhor apresentadas pela definição de um símbolo Regge[6] que é uma correspondência um-para-um entre ele e um símbolo 3-j e assume as propriedades de um quadrado semi-mágico.[7]



Na mecânica quântica, os símbolos 6-j de Wigner foram introduzidos por Eugene Paul Wigner em 1940 e publicado em 1965. Eles são definidos como uma soma sobre os produtos de quatro símbolos 3-j de Wigner,[1][2]
A soma é mais de todos os seis mi permitidos pelas regras de seleção dos símbolos 3-J.
Eles estão intimamente relacionados com os coeficientes W de Racah,[3] que são utilizados para reacoplamento três momentos angulares, embora símbolos 6-j de Wigner têm maior simetria e, por conseguinte, proporcionar um meio mais eficiente de armazenar os coeficientes de reacoplamento. O relacionamento deles é dado por[4]:






Simetria conformal

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegaçãoSaltar para a pesquisa
Em física teórica, a simetria conformal (ou simetria conforme) é uma simetria sob dilatação (invariância de escala[1]) e sob as transformações especiais conformes. Em conjunto com o grupo de Poincaré esses geram o grupo de simetria conformada.[2]

Transformação conforme[editar | editar código-fonte]

Simetria conformal sob a especial transformação conforme com as seguintes relações.
x

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


onde  gera translações gera transformações de escala como um escalar e  gera as transformações conformes especiais como um vetor covariante [3] sob transformações de Lorentz.